Lost in Space Wiki
Lost in Space Wiki

The Jupiter 2, (alternatively the Gemini 12, the Jupiter II or simply the Jupiter) is the “flying saucer” spaceship of the Robinson Family “The culmination of nearly 40 years of intensive research” at the time of launch, it was considered the “most sophisticated piece of hardware yet devised by the mind of man”. (The Reluctant Stowaway) However, the “Super-Spaceship” had in fact been based on the warp drive and other technology of a crashed Aeolian vessel, and built by the Irwal Corporation under the tutelage of the craft’s sole survivor, P’ezu. (Voyage to the Bottom of the Soul) The successor of the sabotaged and destroyed Jupiter 1 spacecraft, The Jupiter 2 was almost doomed to a similar fate when it launched on October 16th, 1997, but incredibly the craft survived to become lost in space, carrying it’s crew through years of adventures, and finally bringing them home in 2015. (The Epilogue)

The Jupiter 2 resembles a "flying saucer" on the exterior, and in fact started the flying saucer phenomenon after travelling back in time to 1947 (Visit to a Hostile Planet) It has a dome on top and a large viewport. The actual size of the spacecraft is unclear. The hull of the ship is made of titanium, although parts of it, including the hatch, are made of cosmium steel. In the first few episodes, it glows in most flight scenes, but this was dropped later on. It was launched on October 16, 1997, towards a planet of the star Alpha Centauri for the purpose of colonizing it. Its crew consisted of the Robinson family, Major Don West , and an enviormental control The Robot. The Jupiter 2 mission cost about 30 billion dollars. There was presumably a Jupiter 1 which probably got sabotaged by the same orginization, Aeolus 14 Umbra, who attempted to destroy the Jupiter 2. The Jupiter 1 was seen in the Lost in Space comics and in the Alpha Control reference manual. The Jupiter 2 itself was described as a "super spaceship" in The Reluctant Stowaway . The ship also had artificial gravity which was only switched off temporarily in the first episode. The ship is the most sophisticated piece of hardware yet devised by the mind of human beings at the time of launch. Bold in concept and brilliant in execution, this most delicate yet most colossal of instruments makes possible travel to other worlds beyond our solar system. It is shown to take five and a half years for it to reach Alpha Centauri, although in later episodes it can travel through an entire galaxy within a day or less--though the show's use of the term 'galaxy' often does not match real life. In the comic, the ship has movable walls and they can be removed to make more room in the ship. The spacecraft is propelled by atomic propulsion, using the substance deutronium as a power source. It also appeared to have an ion drive, and a magnetic drive. Small rockets came from unknown locations along the rim of the ship. the Jupiter 2 is also equipt with an all terrain chariot vehicle.

The spaceship stands two storeys tall. The upper deck contains a sophisticated automated guidance system and a set of freezing tubes capable of placing the six member crew into a state of suspended animation for the duration of their five and half year journey. It also contains storage lockers, a communications system, and cabin pressure control. Located at the center of the upper deck is the astrogator. The astrogator is commonly seen replaced by a table and chairs when on a planet, as it is not required when not in flight. An electronic glide tube elevator and  fixed ladder are used to connect both decks. In the third season, one of the storage rooms is seen to house a staircase leading to the lower deck, and other parts of the ship. The space pod was also added and accessed from the upper deck. There are several inconsistencies in where characters access parts of the ship. In the episode "Space Creature" we see a huge third deck that contains the power core, but it is unclear whether or not its on a seperate deck or not. The ship constantly changes. The controls also frequently change and there appears to be many buttons that activate the force field. Another constant change was the positioning of the fire extinguishers, which made the ship appear to have hundreds. Small communication transmitters also appear to be in many places.

The ship became lost in space as a result of sabotage by Dr. Zachary Smith, acting as an agent of a foreign government. Dr. Smith was inadvertently trapped aboard the ship at launch. The ship is the home of the Robinson family, Major Don West, Dr. Smith and their General Utility Non Therorising Enviormental Control Robot class M3, Model B9, known as The Robot in their journeys through the universe in search of Alpha Centauri.

If you are looking for another version of the ship, click on Jupiter 2.

Systems and Components:[]

  • retro-rocket
  • port side thrusters
  • cabin pressure control
  • inertial guidance system
  • computer
  • comfort control system
  • left backup rocket
  • left landing control
  • space pressure control
  • force field
  • auxillary thrusters
  • warp drive
  • solenoids
  • gyros
  • stabilizing unit
  • airlock
  • air ducts
  • hydroponic garden
  • atomizing fuel tank
  • energizing module
  • ionic drive
  • reactor chamber
  • orbital attitude system
  • power system
  • ionic beam locator
  • fire extinguishers


  • The Jupiter 2's drive can knock out power and radio transmissions.
  • the vessel's solar batteries would not stand -150 degree Fahrenheit temperatures, despite functioning in outer space.
  • there is a dehumidifying unit behind Smith's cabin
  • it has a radial reactor
  • it has a linear accelerator


Lost In Space Original Crash Site

The Jupter 2 originaly crashed upon a planet that they named Priplanus. However, the actual spot is called Red Rock Canyon. Here is a recent color film about the landing site. It also shows Pinnacle Rock which is made to seem huge in the original that was filmed with a miniature. Hope you enjoy it. Note that the original clip also shows a shot of the Trona Pinnacles as seen through the windows of the Jupiter 2. The Pinnacles are in California east of Ridgecrest.


Jupiter 2 Crash Site

Technology & Equipment[]

One of the most vital pieces of equipment was their environmental control robot model B-9, called The Robot. The Robot was extremely strong, able to discharge strong electrostatic charges from his claws, and could detect threats with his scanner. The Robot could even detect faint smells in the episode "One of Our Dogs is Missing." He could both understand speech as well as speak. In episode 8, Invaders from the Fifth Dimension, the Robot claims the ability to read human minds by "translating emitted thought waves back into words."

The crew had a variety of methods of transportation. First, there was the two-deck, nuclear powered Jupiter 2 flying saucer spacecraft itself. One critical piece of technology aboard the Jupiter 2 was the suspended animation "freezing tubes" which made interstellar space travel feasible. When they were on a planet, the crew used an amphibious tracked exploration vehicle called the chariot which had clear body panels and roof, seismograph, radar scanner, solar cells, solar batteries, a gun rack and gun hatch. The space pod, a small spacecraft modeled on the Project Apollo Lunar Module was added to the show in its third and final season. It was used to travel from its bay in the Jupiter 2 to destinations either on a planet or in space. On occasion, Prof. Robinson or Major West used what was then an exciting new invention: the jet pack.

For self-defense, the crew of the Jupiter 2 (including Will Robinson (occasionally against his parents' wishes) had an arsenal of laser guns at their disposal, both rifles and handguns. Although in "The Ghost Planet" Smith gives away all the Robinsons weapons, more appear in later episodes.  The crew also employed a force field around the Jupiter 2 for protection while on alien planets. They also used walkie-talkies to keep in touch with each other when away from the ship.

The Jupiter 2 had technology that simplified or did away with mundane tasks. The washing machine took seconds to work, cleaning, ironing, folding, and packaging the clothes in plastic bags. The ship had no light bulbs. Maureen said the lights were "transistorized," perhaps meaning they were electroluminescent or built from arrays of light emitting diodes. Protein pills (a complete nutritional emergency substitute for whole foods) were featured in "The Hungry Sea" (air date: 31 October 1965) and "The Space Trader" (air date: 9 March 1966). In this, Lost in Space was ahead of NASA and Pillsbury which later developed "Space Food Sticks." Silver reflective space blankets, a then new invention developed by NASA in 1964, were used in "The Hungry Sea" and "Attack of the Monster Plants" (air date: 15 December 1965).

On the other hand, sound and voice recording was less advanced, for example, using reel-to-reel tape recorders, and Prof. Robinson often put pen to paper to write journal entries in early episodes.

Alpha Control Reference Manual[]

  • 1 Mission History
  • 2 Function and Equipment Description
  • o 2.1 Complete Spacecraft
  • o 2.2 Drive Systems
  • + 2.2.1 Anti-Gravity Drive
  • + 2.2.2 Deutronium Annihilation Drive
  • + 2.2.3 Yaw/Pitch/Retro and Braking Control Rockets
  • o 2.3 Defensive Weapons
  • + 2.3.1 Force Field Projector
  • o 2.4 Cryogenic Suspended Animation
  • o 2.5 Navigational Guidance System
  • o 2.6 Computers and Communications
  • + 2.6.1 Computers
  • + 2.6.2 Communications
  • o 2.7 Environmental Control Systems
  • + 2.7.1 Artificial Gravity
  • + 2.7.2 Cabin Pressure Control
  • + 2.7.3 Comfort Control
  • + 2.7.4 Airlocks
  • + 2.7.5 Staterooms
  • + 2.7.6 Spacesuits
  • o 2.8 Landing Gear/Exterior Lighting
  • o 2.9 Laboratory/Workshop
  • o 2.10 Food Preparation and Storage
  • + 2.10.1 Galley/Food Storage Units
  • + 2.10.2 Off-Campsite Food Preparation
  • + 2.10.3 Hydroponic Farming

Mission History[]

The early pre-launch countdown which commenced at zero minus 48 hours proceeded smoothly. During the final portion of the countdown, some problems did develop, including power failures, etc. (see Table 3 for a detailed account of the sequences occurring during the launch). The Jupiter 2 lifted off at 8:17 pm (EST) on the scheduled date, and for the first 50 million miles the craft was intended to be controlled by radio telemetry from earthbound and lunar tracking stations. Alpha Control’s records indicate that almost immediately after leaving Earth orbit, the Jupiter 2 began to deviate from its planned trajectory. Lunar tracking station 2 Omega reported a negative flight profile, but all attempts to initiate a course correction using vector telemetry were ineffective. The flight deviation was simulated at Alpha Control’s main computer complex in Houston and calculations indicated a 200 pound excess weight condition aboard the spacecraft, which we now know to be the result of Dr. Zachary Smith’s presence on board the troubled ship. The Jupiter 2’s payload had been calculated to within a fraction of an ounce, therefore the automatic navigator, not having been programmed for an excess weight condition of this magnitude, was powerless to redirect the Jupiter 2.

The spacecraft, traveling further and further off course, headed towards a swarm of chrondite rock meteoroids. Remote telemetry indicated that fires had broken out behind all magnapanels, and the flight controls had been severely damaged. Later, Lunar Tracking Station Copernicus reported a sudden increase in the speed of the Jupiter 2, which proceeded to travel beyond the range of all tracking facilities. No further communications were received, and in an October 21 press release, Alpha Control representatives theorized that further damage may have been caused by the premature activation of the spacecraft’s environmental control robot, and that sabotage of the robot’s programming was suspected.

The next contact was reported in December of 1998 when word of an alleged incident involving Will Robinson was received by Colonel Mason at Alpha Control. Mrs. Clara Sims and Sheriff George Baxendale of Hatfield Four Corners, Vermont, filed depositions that the youngest Robinson had visited them for nearly four hours after traveling on a maser beam from an unknown planet on which the Robinsons had crashed, and which they had named Priplanus. Will reportedly returned, in full view of a number of townspeople, back to Priplanus on another maser beam. Even though photographs and descriptions matched the boy, and a Jupiter 2 portable communication device was recovered and identified, Alpha Control requested a news blackout, as the entire incident was scientifically unexplainable at the time. The townspeople, wishing to avoid publicity, readily agreed.

In April of 1999, contact was reported by Alpha Control telemetry operators with John Robinson. At that time he reported that the Jupiter 2 had exhausted its supply of fuel for its thrusters and was unable to shunt fuel from the main systems in time to make a course correction for Earth. This incident was not reported to the public due to the difficulty in confirming the facts. Neither was another incident a year later, when a hostile alien craft attempted to land on the Earth and was warded off by missiles. Allegedly, a radio message from the craft, from Will Robinson, warned that although it was the Jupiter 2, it was under control of hostile aliens.

With the information recently recovered from the Space Lightship F-12, we are now able to piece together some of the incredible adventures of the Robinson family. We have confirmed that staff psychologist Zachary Smith, reported missing at the time of the Jupiter 2 launch, was a stowaway and saboteur. It was Col. Smith’s reprogramming of the B-9 robot to destroy several key subsystems that sent the Jupiter 2 out of this region of the galaxy under runaway acceleration. If it had not been for the fact that the Robinson’s were revived from suspended animation so that they could put a stop to the robot’s activities, their mission would have ended in catastrophe..

Complete Spacecraft[]

The Jupiter 2 stands over two stories tall and weighs over 1,100,000 pounds. The upper level contains all flight monitoring systems: propulsion, navigation, spectrometry, radar, communications, and computers. In addition, artificial gravity, cabin pressure, and climate-control systems are also monitored and controlled. Six cryonic suspended animation freezing tubes were provided for the Robinsons and Major West to survive the five and a half year voyage with virtually no aging. An airlock provides egress from the vehicle’s main hatch to a non-compatible environment. Two additional hatches on either side of the elevator glide tube provide access to a tool/spacesuit storage area and to the space pod respectively. A metallic rung ladder and an electric elevator connect both levels of the spacecraft. Centrally located on the upper deck is the inertial navigation gyroscope (astrogator).

The lower level contains all propulsion machinery. Direct access to the atomic propulsion systems can be gained through the hatch next to the elevator glide tube. A fully equipped galley for food storage and preparation, a scientific laboratory, auxiliary control center, lavatory/laundry room, and three staterooms complete this level. A centrally located magnetic lock serves as the base station for the spacecraft’s environmental control robot. Packaged within the interior of the spacecraft is a smaller excursion vehicle (space pod) and an all-terrain vehicle (the chariot, unassembled). All mechanical and electronic systems were designed to function for a minimum of ten years, even under extreme environmental conditions.

Anti-Gravity Drive[]

The anti-gravity drive system was designed for use in vehicle liftoff and touch down. The anti-gravity drive consumes 250 megawatts at full power and is capable of delivering up to ten g’s of acceleration. In terms of the Earth’s gravitational field at sea level, this translates to 55,000 pounds of thrust. The engine is relatively compact with the major space requirement being for the circular track in the lower region of the spacecraft which houses the Thompson unitectic gravity field projector. Visible light is given off as a by-product of each revolution of the generated field. The anti-gravity drive is throttled back when the pull of gravity on the spacecraft is less than 1/20th of Earth’s gravity at sea level. At that field strength, the anti-gravity drive becomes ineffective, producing less than 200 pounds of thrust.

Important note: Because of the magnetic fields generated by this propulsion device, it can, and will, produce permanent brain damage in any life forms not protected by the freezing tube chambers during full-power liftoff. It is essential that all personnel be located within their assigned tube whenever 100% thrust is utilized in the antigravity drive to avoid the side effects inherent with the design. However, up to 80% of full power can safely be used without danger to the ship’s occupants. Under normal circumstances this would be more than enough power for any required manoeuver, and a call for “full power” by either pilot or copilot when the crew is outside of the freezing tubes would automatically be understood to be a request for power at the 80% level. A built-in safety device must be overridden to obtain a power level of over 80% of actual available power, which in some cases may be essential for a proper trajectory.

Full-power launches are characterized by a loud hum of the antigravity engines, and a glow around the ship caused by the magnetic fields being generated at the time. Such a launch was used to leave Earth.

Deutronium Annihilation Drive[]

Deep space propulsion is accomplished with two deutronium-annihilation atomic motors. Theoretically, these engines are capable of producing unlimited thrust and speed. Photons are created through deutronium annihilation in the hafnium carbide reactor chamber located in the center of the lower region of the spacecraft. The photons radiate through the urns projecting from the Thompson field projector. These engines cannot be activated except in deep space. Operation within the atmosphere of a planet would result in life-threatening contamination due to dangerous radioactive exhaust.

Testing on early prototype engines revealed that the deutronium annihilation process becomes unstable at more than 80% of maximum. Tests conducted in the stable operating region proved that the resulting thrust and terminal velocity were sufficient to propel the spacecraft to Alpha Centauri in 5.5. years. At the last design phase, electronic safeguards were placed on the Jupiter 2’s central navigation and engine command sequencer to prohibit engine operation in an unstable mode.

Yaw/Pitch/Retro and Braking Control Rockets[]

For quick maneuvering, nine conventional liquid-hydrogen/liquid-oxygen rockets are employed. These assist in controlling yaw and pitch, and may also be fired to assist during liftoff or re-entry.

Defensive Weapons[]

A variety of offensive and defensive weapons were included on board the Jupiter 2 in case the new planet was inhabited by hostile life forms. Two subcontractors each produced a hand-held laser pistol capable of a sustained 100 kilowatt discharge for twenty minutes. Ten pistols made up the spacecraft’s complement. Four more powerful 500 kilowatt laser rifles were also included. All laser weapons are fully rechargeable. In addition to their obvious use as weapons, the laser devices were also intended to facilitate the clearing of land for colonization. A supply of 50 grenades, each having a charge equivalent to one-half of a stick of dynamite, were provided for protection and to ease in the removal of larger geological features. In addition, the environmental control robot has an electro-force beam capability, and the chariot has two neutron guns.

Force Field Projector[]

The Jupiter 2 itself has a close perimeter force field capability. This system is controlled from the main console on the upper deck. A more-powerful extended perimeter force field projector was packaged aboard the spacecraft for use once Alpha Centauri was reached. This device can protect the campsite up to a range of 100 feet. The force field projector was unassembled at launch and placed next to the chariot in the spacecraft’s hold.

Cryogenic Suspended Animation[]

Six cryogenic suspended animation chambers (freezing tubes) were included to slow the aging process of the astronauts. The aging ratio is one day for 5.5 years of travel. This technology reduces body metabolism and heart rate by lowering body temperature. All body functions are carefully monitored and controlled. Three static discharge tubes (one located between every two chambers) maintain the electromagnetic balance biologically necessary to keep the frozen human bodies in stasis.

The chambers were signaled by Alpha Control to operate at zero minus 45 seconds to launch. Medical telemetry provided data to Alpha Control throughout the launch. In the event of a malfunction, the onboard computer could reanimate the occupants. The flight computer was programmed to automatically terminate suspended animation upon entering the atmosphere of the new world. Manual controls were provided on the overhead consoles located behind the suspended animation chambers. In addition, the equipment could be activated from the pilot’s console.

Navigational Guidance System[]

The navigational guidance system consists principally of three components: the NGS scanner, inertial navigation gyroscope, and computer vector software. The NGS scanner protrudes from an access hatch in the spacecraft’s titanium hull. The scanner locates three reference stars (Alpha Centauri A, Sirius, and Sol) relative to the mean galactic plane and supplies their locations to the computers. The scanner also monitors the procession or recession of the reference stars by measuring the Doppler shift of the stars’ light.

The navigation computers process all NGS scanner data along with a precise measurement of time supplied by the atomic clock to calculate spacecraft velocity and position. The spacecraft’s velocity is determined from the Doppler shift measurements of the reference stars whose radial velocities are known. Distance is calculated by triangulation. This information, along with the computed spacecraft trajectory in vector form, is continuously stored on magnetic tape to ensure that a complete mission history is profiled.

Each time the computer system computes a new trajectory, it automatically updates the inertial navigation gyroscope. Centrally located on the upper deck, the inertial navigation gyroscope was calibrated to the spacecraft’s mass at liftoff and is sensitive to changes in motion as small as 10 seconds of arc. A smaller but less accurate device was included in the environmental control robot as a safety backup.


Three main computer systems provide service with a 99.9999% reliability rating, necessary because of their importance in controlling every vital subsystem. Each computer is operationally self-contained, but all information is shared in parallel with the others. The primary function of the computers is to analyze all navigational data and control the propulsion systems according to the preprogrammed mission plan. In addition to flight details, all medical, environmental control, and food storage subsystems arc monitored and controlled. All subsystems and biomedical telemetry is processed and relayed to the communications subsystem for transmission to Alpha Control. The computers also interface with the scanners and spectrometer.

Each computer has 100 megabytes of core memory which are fully protected via hard disk and tape drive backups. A 64 bit microprocessor capable of processing over 1,000,000 commands per second is at the heart of each computer. Up to 200 separate data channels can be multiplexed for recording on the vector tape transport. Human interface is all but unnecessary due to the computers’ advanced design. However, data displays and graphics may be viewed on the video screen located above the communications console on the upper deck.

In the case of a massive failure of the primary computers, the environmental control robot’s computers can be loaded with elementary mission instructions to perform critical functions.


High gain radio and telemetry gear utilizing the X and Z bands (frequencies classified) were designed for the Jupiter 2. There are two 10 kilowatt transmitters and two receivers capable of recovering signals with as low as 100 volt/meter strengths. One complement is located on the upper deck beneath the video monitor and the other at the lower level’s auxiliary flight control.

Low-power transmitters/receivers are available in each of the following: chariot, space pod, Robot, and within the helmets of the space suits. A number of hand-held radios are provided for communication on the new planet’s surface. The chariot is also equipped with a 150 watt public address system for emergency purposes.

Besides voice transmission, over 200 data channels can be multiplexed and transmitted, providing vital information from the spacecraft’s telemetry to Alpha Control. Telemetry equipment is installed to monitor biological functions, spacecraft trajectory and speed, vital circuitry, heat levels, and fuel consumption. All telemetry is monitored and multiplexed by the main computers before transmission. Video reception is permitted on the main monitor screen. Primarily, the video monitor was designed to be used with the spacecraft’s computers for data display. Television transmission was thought to be an unnecessary luxury, since all of the astronauts would be traveling in suspended animation, so no television cameras were placed on board. However, an experimental visual scanner was included for the Robinson’s use while on the planet’s surface.

Artificial Gravity[]

A by-product of the anti-gravity drive technology permits maintenance of normal Earth gravity within the spacecraft during interstellar flight. A low power (20 kilowatt) inverse Thompson gravity field projector located directly above the Thompson anti-gravity drive provides a uniform gravitational field on both decks. Control circuits are located on the center main circuitry panel on the upper deck.

Cabin Pressure Control[]

Cabin pressure is maintained at Earth standard with a 79% nitrogen/21% oxygen atmosphere. Since the crew of the Jupiter 2 was in suspended animation during the flight, the demands on the atmospheric control subsystem were anticipated to be light. Consequently, oxygen and carbon dioxide storage tanks are relatively compact. At normal consumption rates (out of suspended animation) the system can support a breathable atmosphere for six people for up to 60 days.

Controls for the cabin pressure seal and the oxygen bleeder valve are located on the upper level next to the tool/spacesuit storage hatch. Atmosphere circulation through the air purifier is accomplished through vents located on both upper and lower decks. The electronic air purifier is located on the lower deck in Auxiliary Control.

Comfort Control[]

The comfort control system maintains a 22° C. inside temperature. The system can cope with exterior temperatures ranging from the near absolute zero of interstellar space (-271° C.) up to 1650° C. Extreme thermal gradients caused by solar load can be withstood without the rotation of the spacecraft about its neutral axis. While usually computer controlled, there are provisions for manual operation. On the upper level, controls are located above the main circuitry panel next to the airlock. On the lower level, the controls are located in the Auxiliary Control complex. Heat is tapped from the heat exchanger around the hafnium carbide reactor chamber. Auxiliary quartz heaters will function when the atomic engines are not in use. Cool air is supplied from one of two available compressors. All processed air is circulated through the air purifier to the vents located on both upper and lower decks.


Extra Vehicular Activity (EVA), if required, can be accomplished through usage of the upper deck airlock to the primary hatch. Interior atmosphere integrity is maintained while the astronaut is depressurizing or re-pressurizing the airlock chamber. Atmosphere in the chamber is supplied to and from the cabin pressure control system. High efficiency pumps allow pressurizing or depressurizing in only 15 seconds. A second airlock located next to the suspended animation chambers provides access to or from the space pod.


Three staterooms, located on the lower level, were designed to be ergonomically functional and yet aesthetically pleasing. These rooms were specifically designed to be as homelike as possible for the colonists on the new world, and each was decorated under the direction of the Robinsons. Each stateroom features a full closet at the rear of the room with two fold away beds, one on each side wall. Book shelves are available above one bed, and a fold down desk is near the entrance.


The environmentally controlled spacesuits are designed to withstand temperatures ranging from minus 150° C to plus 150° C. The outer layer of aluminized Kapton II metallic cloth is designed for micrometeoroid protection. A glass cloth layer underneath provides thermal protection, and an inner nylon layer coated with neoprene prevents ballooning from internal atmospheric pressure. The innermost layer is a Nomex lining to protect the wearer’s skin from chafing. The helmet is designed to withstand 10,000 pounds per square inch and contains a built-in radio transmitter/receiver. A polyglass/metallic tether attaches to the suit and can be secured to the spacecraft for extravehicular activity if required.

Landing Gear/Exterior Lighting[]

The Jupiter 2 was designed for primary touchdown on three supports that project from the outer hull. Each support is extended hydraulically and then mechanically locked in position. Ingress and egress to the vehicle is via steps on the number two support which lead to the deck-to-deck rung ladder on the lower level. Above each hydraulic support arm is a high intensity light beam for visual confirmation of the integrity of the ground supporting pads. Other exterior lights include the luminescence emanating from the Thompson field projector on the undercarriage, and the lights within the upper domed sensor array on the top of the vehicle.

The secondary or permanent landing mode was to be instituted after all testing had concluded that the new world was fit for colonization. Drilling rigs and blasting equipment were placed on board to facilitate the preparation of a foundation for the Jupiter 2. Once completed, the spacecraft would lift off, hover until the landing legs were safely stowed, and touch down within the foundation. This mode permits the use of the main hatch at ground level for ingress and egress.


Located on the lower level between the auxiliary control center and the galley is a laboratory and workshop area. In the center adjoining the back wall is a laboratory bench with built-in sink, and waste disposal facilities located underneath. Several key pieces of test equipment—voltmeters, ammeters, and resistance/capacitance substitution boxes are included for the repair and building of electronic equipment. Microscopes, calipers, weight scales, and other mechanical inspection instruments are stowed underneath, along with a supply of basic chemicals for chemical and biological analysis. Three algae incubation units located on the counter opposite the service corridor are included for the analysis of biological materials. Each unit contains 12 Petri dishes for the cultures to grow in. A pressurization valve at the base of each incubation unit permits any gas or atmosphere to be introduced. Also located on the base is a valve for drawing off liquid. A computer terminal located overhead provides access to the ship’s computers for data entry and analysis.

Galley/Food Storage Units[]

The galley is located on the lower deck between the laboratory and the glide tube. It was designed for usage once the occupants reached the new world and contains a two year supply of bulk food including meats, vegetables, grains, and dairy products. In addition, an eight year supply of concentrated food pills and pastes insures that the colonists will survive if hydroponic farm crop failure occurs.

The center table comfortably seats six and contains controls for dispensing beverages, food pills, and pastes along a built-in conveyer belt. Bulk foods may be prepared in the microwave and convection ovens located behind the galley area and accessed through the hallway between the galley and laboratory.

Nutrient pills and pastes are stored on the wall near the glide tube in humidity controlled canisters. Blanched and freeze-dried fruits and vegetables are also stored in canisters. Two upright freezer units, which are located behind the galley area, house perishable goods. Other goods, such as nonfat dried milk and canned hams, are stored on shelves and miscellaneous cupboards located in and about the area of the ovens and freezers.

All freezer, oven, food purification, humidity stabilization, and mechanical dispensers are computer controlled. Read-outs and manual overrides are located on the back and left side walls. Once landed, these systems are priority one for backup power supply in the event of a primary power supply failure.

Off-Campsite Food Preparation[]

Conventional pots and pans may be used with a four burner electric stove if encampment away from the spacecraft is required. The stove apparatus also contains a high intensity overhead heat lamp for additional warming. All apparatus can be stored in a special suitcase and may be operated from a portable fuel cell power supply or directly from the chariot’s power supply. Special thermal chests can keep food frozen for up to 7 days. A portable sonic dishwasher cleans and sanitizes all utensils.

Hydroponic Farming[]

A variety of seeds, including peas, squash, corn, tomatoes, onions, carrots, and potatoes, were provided for growing on fiberglass mats immersed in a nutrient rich liquid medium. The nutrient medium contains all 17 chemical ingredients necessary for high-yield plant growth. Four hydroponic stations are provided in case native soil conditions are not hospitable to terrestrial plant life. On board waste recyclers provide replenishment of nutrient supplies


1. ↑ The original text from The Alpha Control Reference Manual states that the year was 1997. This is most certainly incorrect because that would mean that the first 14 episodes took place in only 2 months. Also, in this episode Return From Outer Space, Aunt Clara says that the Robinsons left Earth last year. 2. ↑ The original text in The Alpha Control Reference Manual uses the date "September of 1998". In the episode Wild Adventure, the controller says is that the Jupiter 2 was lost OVER a year ago. Technically, this could mean any amount of time over 1 year. It could even be 2, 3 or four years. However, in common usage, I would think it could be more than one year, but less than 2. If it were more than 1.5 years, he would have probably used the language "Almost two years ago". Anyway, using this reasoning, Wild Adventure could have taken place no earlier than 10/16/1998 (one year after the launch) and no later than 10/16/1999 (two years after the launch). Assuming the usage of common phrasing, one would suppose that the episode probably took place around the year and a half mark, or around April 1999. This would have been more than a year, but less than 2. The controller could have justifiably used the phrase, "over a year ago". This would still allow Return From Outer Space to have taken place in December of 1998 (over a year ago after the Robinsons took off, according to Aunt Clara) and still be before Wild Adventure in April 1999. 3. ↑ In the episode Target: Earth. 4. ↑ Dr. Smith said that he recognized Chicago and that's where he thought they landed. However, this declaration is dubious because Dr. Smith is rarely correct and doesn't know where he is half of the time! 5. ↑ In the episode The Haunted Lighthouse 6. ↑ This text is taken from the fan publication The Alpha Control Reference Manual which was written in 1988. At that time, 100 megabytes of memory seemed like a lot. The average desktop computer of the day, had a 5 to 10 megabyte hard drive (if it had a hard drive at all). Today's (2007) computers have hard drives in the 100s of gigabytes, with terabyte drives within the reach of the budgets of many people.


Galleries: Here is a link to more galleries of the Jupiter 2. It starts with the first gallery. To move to the next gallery press >.